Some Representations for the Generalized Drazin Inverse of Block Matrices in Banach Algebras

نویسنده

  • DIJANA MOSIĆ
چکیده

We give explicit representations of the generalized Drazin inverse of a block matrix having generalized Schur complement generalized Drazin invertible in Banach algebras. Also we give equivalent conditions under which the group inverse of a block matrix exists and a formula for its computation. The provided results extend earlier works given in the literature. 2010 Mathematics Subject Classification: 46H05, 47A05,15A09.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

Representation for the generalized Drazin inverse of block matrices in Banach algebras

Several representations of the generalized Drazin inverse of a block matrix with a group invertible generalized Schur complement in Banach algebra are presented.

متن کامل

Representations for the Generalized Drazin Inverse in a Banach Algebra (communicated by Fuad Kittaneh)

The Drazin inverse has important applications in matrix theory and fields such as statistics, probability, linear systems theory, differential and difference equations, Markov chains, and control theory ([1, 2, 11]). In [9], Koliha extended the Drazin invertibility in the setting of Banach algebras with applications to bounded linear operators on a Banach space. In this paper, Koliha was able t...

متن کامل

On the Generalized Drazin Inverse and Generalized Resolvent

We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in C∗-algebras is consider...

متن کامل

Formulae for the generalized Drazin inverse of a block matrix in terms of Banachiewicz–Schur forms

We introduce new expressions for the generalized Drazin inverse of a block matrix with the generalized Schur complement being generalized Drazin invertible in a Banach algebra under some conditions. We generalized some recent results for Drazin inverse and group inverse of complex matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012