Some Representations for the Generalized Drazin Inverse of Block Matrices in Banach Algebras
نویسنده
چکیده
We give explicit representations of the generalized Drazin inverse of a block matrix having generalized Schur complement generalized Drazin invertible in Banach algebras. Also we give equivalent conditions under which the group inverse of a block matrix exists and a formula for its computation. The provided results extend earlier works given in the literature. 2010 Mathematics Subject Classification: 46H05, 47A05,15A09.
منابع مشابه
Generalized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملRepresentation for the generalized Drazin inverse of block matrices in Banach algebras
Several representations of the generalized Drazin inverse of a block matrix with a group invertible generalized Schur complement in Banach algebra are presented.
متن کاملRepresentations for the Generalized Drazin Inverse in a Banach Algebra (communicated by Fuad Kittaneh)
The Drazin inverse has important applications in matrix theory and fields such as statistics, probability, linear systems theory, differential and difference equations, Markov chains, and control theory ([1, 2, 11]). In [9], Koliha extended the Drazin invertibility in the setting of Banach algebras with applications to bounded linear operators on a Banach space. In this paper, Koliha was able t...
متن کاملOn the Generalized Drazin Inverse and Generalized Resolvent
We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in C∗-algebras is consider...
متن کاملFormulae for the generalized Drazin inverse of a block matrix in terms of Banachiewicz–Schur forms
We introduce new expressions for the generalized Drazin inverse of a block matrix with the generalized Schur complement being generalized Drazin invertible in a Banach algebra under some conditions. We generalized some recent results for Drazin inverse and group inverse of complex matrices.
متن کامل